

Electromagnetic emission from hot medium measured by the PHENIX experiment at RHIC

Takao Sakaguchi
Brookhaven National Laboratory
For the PHENIX Collaboration

IOP Institute of Physics

Rutherford Centennial Conference on Nuclear Physics

8-12 August 2011, The University of Manchester, UK

Electromagnetic probe (photon) basics

- Production Process
 - Compton and annihilation (LO, direct)
 - Fragmentation (NLO)
 - Escape the system unscathed
- Carry dynamical information of the state
 - Temperature, Degrees of freedom
 - Immune from hadronization (fragmentation) process at leading order
 - Initial state nuclear effect
 - Cronin effect (k_T broardening)

Photon Production: Yield $\propto \alpha \alpha_s$

Hard scattering γ_{dir} in Au+Au (high p_T)

- Au+Au = p+p x T_{AB} holds pQCD factorization works
- NLO pQCD works. → Non-pert. QCD may work in Au+Au system

Possible sources of photons

Possible sources of photons

Low p_T photons with very small mass

One parameter fit: $(1-r)f_c + r f_d$ f_c : cocktail calc., f_d : direct photon calc.

$$\frac{1}{N_{\gamma}} \frac{dN_{ee}}{dm_{ee}} = \frac{2\alpha}{3\pi} \sqrt{1 - \frac{4m_{e}^{2}}{m_{ee}^{2}}} (1 + \frac{2m_{e}^{2}}{m_{ee}^{2}}) \frac{1}{m_{ee}} \left| F(m_{ee}^{2}) \right|^{2} (1 - \frac{m_{ee}^{2}}{M^{2}})^{3}$$

2011-8-11

$$r = \frac{\gamma^*_{dir}(m > 0.15)}{\gamma^*_{inc}(m > 0.15)} \propto \frac{\gamma^*_{dir}(m \approx 0)}{\gamma^*_{inc}(m \approx 0)} = \frac{\gamma_{dir}}{\gamma_{inc}}$$

- Focus on the mass region where π^0 contribution dies out
- For M<<p_T and M<300MeV/c²
 - $-q\overline{q} \rightarrow \gamma^*$ contribution is small
 - Mainly from internal conversion of photons
- Can be converted to real photon yield using Kroll-Wada formula
 - Known as the formula for Dalitz decay spectra

PRL104,132301(2010), arXiv:0804.4168

T. Sakaguchi, Rutherford Conf., Manchester, UK

Low p_T photons in Au+Au (thermal?)

- Inclusive photon $\times \gamma_{dir}/\gamma_{inc}$
- Fitted the spectra with p+p fit + exponential function
 - $T_{ave} = 221 \pm 19^{stat} \pm 19^{syst} MeV$ (Minimum Bias)
- Nuclear effect measured in d+Au does not explain the photons in Au+Au

Profiling collision systems using photons

- Depending the process of photon production, path length dependence of direct photon yield varies
 - v₂ of the direct photons will become a source detector
 - Late thermalization gives larger v₂
- Once the path length dependence has been fixed, system expansion scenario can be studied by looking at photons at different rapidities.
 - e.g. PRC71 (2005) 064905

For prompt photons: v₂~0

Low p_T photon flow

Hadron decay photon v_2 subtracted from inclusive photon v_2 .

$$v_{2}(dir.\gamma) = \frac{R \times v_{2}(incl.\gamma) - v_{2}(bkgd.\gamma)}{R - 1} \quad R = \frac{N^{inc.photon}}{N^{BG_photon}}$$

What we learn from model comparison

Large photon flow is not explained by models

Summary

- Direct photons are a power tool to investigate the collision dynamics
 - From initial state till the freezeout of the system
- Hard scattering photons have been measured in nucleus collisions for the first time
- Low p_T photons show thermal characteristics (exponential slope)
- Direct photon v₂ has been measured for the first time
 - Powerful source detector
 - Unexpectedly large flow was seen. Not explainable by models

Backup

13

Initial kT or recombination?

- Recombination model claims that the Cronin effect in hadron production is built up by recombination (e.g. R. Hwa, Eur.Phys.J.C43:233(2005))
 - Cronin effect in direct photon production should be much smaller than one in pi0
- Within quoted errors, the effect is same for pi0 and photon production
 - Recombination model needs improvement

Pi0 RAA in d+Au at 200GeV. PRL91, 072303 (2003)

T. Sakaguchi, Rutherford Conf., Manchester, UK

High pT γ_{dir} in p+p – (p)QCD test

- NLO pQCD calculation of γ_{dir} yield is tested with p+p collisions
- The calculation works very well

Aurenche et al., PRD73, 094007(2007)

Analysis

- Reconstruct Mass and pT of e+e-
 - Identify and reject conversion photons in beam pipe, using angular correlation of electron pairs
- Subtract combinatorial background
 - Background checked by like-sign dist.
- Apply efficiency correction
- Subtract additional correlated background:
 - Back-to-back jet contribution
 - Determine amount in like-sign dist, and apply to unlike-sign dist.
- Compare with known hadronic sources

PRC81, 034911(2010), arXiv:0912.0244

T. Sakaguchi, Rutherford Conf., Manchester, UK

15

Outcome from Au+Au collisions

- Comparing with various sources of electron pairs
- Cocktail of the sources are calculated based on π⁰/η spectra measured in PHENIX
- Huge excess over cocktail calculation is seen in 0.2-0.8GeV/c²

PRC81, 034911(2010), arXiv:0912.0244

Sources of electro-magnetic probes

Direct photons through dileptons

PRL104,132301(2010), arXiv:0804.4168

- Inclusive photon × γ_{dir}/γ_{inc}
- Fitted the spectra with p+p fit + exponential function
- Barely dependent of centrality

Cent	dN/dy (pT>1GeV)	Slope (MeV)	χ²/ DOF
0-20%	1.50±0.23± 0.35	221±19± 19	4.7/4
20-40%	0.65±0.08± 0.15	217±18± 16	5.0/3
MinBias	0.49±0.05± 0.11	233±14± 19	3.2/4

Theory prediction on dilepton/photons

- Similar source are seen in both dileptons and photons
- Internal conversion of photons is not shown in dilepton calculation

Dilepton measurement in PHENIX

Designed to measure rare probes:

Au-Au & p-p spin

- + high rate capability & granularity
- + good mass resolution and particle ID
- limited acceptance

2 central arms:

electrons, photons, hadrons

- charmonium J/ψ, ψ' -> e⁺e⁻
- vector meson r, w, φ -> e⁺e⁻
- high p_T p^o , p^+ , p^-
- direct photons
- open charm
- hadron physics

Calculations reasonably agree with data

PRL104,132301(2010), arXiv:0804.4168

2011-8-11

- Factors of two to be worked on ..
- Correlation between T and τ_0

 T_{ini} = 300 to 600 MeV τ_0 = 0.15 to 0.5 fm/c

> T. Sakaguchi, Rutherford Conf., Manchester, UK

21

Direct γ to inclusive γ ratios

- Shown are in p+p, d+Au and Au+Au collisions at √s_{NN}=200GeV
- Lines are NLO pQCD calculation with mass scales (pT=0.5, 1.0, 2.0)
- Excess in min. bias Au+Au is much higher than that in d+Au

